ar X iv : m at h . SG / 0 40 44 96 v 2 1 3 Ju l 2 00 4 Symplectomorphism groups and isotropic skeletons

نویسنده

  • Joseph Coffey
چکیده

The symplectomorphism group of a 2-dimensional surface S is homotopy equivalent to the orbit of a filling system of curves on S. We give a generalization of this statement to dimension 4. The filling system of curves is replaced by a decomposition of M into a disjoint union of an isotropic 2-complex L and a disc bundle over a symplectic surface Σ Poincare dual to a multiple of the form. We show that one can recover the homotopy type of the symplectomorphism group of M from the orbit of the pair (L,Σ). This allows us to compute the homotopy type of certain spaces of Lagrangian submanifolds, for example the space of Lagrangian RP2 ⊂CP2 isotopic to the standard one.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 07 44 1 v 1 [ m at h . SG ] 2 6 Ju l 2 00 4 THE GEOMETRY OF SYMPLECTIC PAIRS

We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.

متن کامل

ar X iv : 0 90 7 . 41 78 v 1 [ m at h . PR ] 2 3 Ju l 2 00 9 An Introduction to Stochastic PDEs

2 Some Motivating Examples 2 2.1 A model for a random string (polymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 What have we learned? . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004